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The recent discovery of certain ceramic materials that turns into superconduc-
tors at relatively high temperatures has stimulated much activities in the subject
area. We strongly believe that mathematics can play a significant role by helping
physicists to understand the basic theory of the phenomenon, by testing existing
models with numerical simulation, and by suggesting modifications of the models.

Since the original discovery of superconductivity by Kamerlingh Onnes in 1911,
theoretical physicists have proposed several models to explain the phenomena.
The first successful one was given by the brothers F. and H. London. In 1950,
Ginzburg and Landau suggested to explain superconductivity as a new type of
phase transition. They hypothesized that the global minimizer of the Helmholtz
energy, calculated from an order parameter and a vector potential, determines
the electromagnetic state of the material. The energy functional contains coef-
ficients that depend on the temperature, in such a way that below the critical
temperature, a bifurcation occurs and a new branch of solutions takes over as the
minimizer. Applying the calculus of variation to the energy functional yields the

«  Present address: Department of Mathematics, University of Southwestern Louisiana,
Lafayette, LA 70504-1010.



famous Ginzburg-Landau equations that are the subject matter of all the articles
in this section.

The newly discovered superconductors belong to the class of Type-II supercon-
ductors, characterized by a large value for a certain parameter, k, that appears
in the Ginzburg-Landau equations. Typically, « is in the range of 100 and above.
Back in 1957, Abrikosov showed the existence of vortices of supercurrent in Type-
IT superconductors. The practical implication of these vortices is the one of the
most active topic of investigation in the study of superconductors.

The papers in this section represent recent efforts by mathematicians to study
the Ginzburg-Landau model. Du, Gunzburger, and Peterson discuss various vari-
ations of the classical model. Chapman investigates the development of the in-
terface between normal and superconducting regions in a Type-I material. Kwong
describes some numerical experiments in solving the static Ginzburg-Landau equa-
tions. Du and E each looks at the time-dependent Ginzburg-Landau equations and
studies the dynamics of vortices. The authors, M. Jones, P. Plassmann, and S.
Wright, of the talk “Inexact Newtons methods and the Ginzburg-Landau model
for Type-1I superconductors” would like to refer the readers to their recent article
”Solution of large, sparse systems of linear equations in massively parallel applica-
tions” | Proceedings of Supercomputing 92, Minneapolis, Nov. 16-22, pp. 551-560,
IEEE Computer Society Press, Los Alamitos, California.

The most current findings in experimental physics indicate that modifications
to the original Ginzburg-Landau theory 1s needed to adequately describe the phe-
nomena exhibited by the new superconductors, which have a layered structure at
the atomic level and possess high anisotropy. Impurities in the material act as pin-
ning centers for vortices and random thermal noise tends to depin them. Theoret-
ical physicists have even suggested the existence of more phases: the vortex-liquid
and vortex-glass phases, but the debate is still going on.

The papers presented here serve to give a better understanding of the classical
model and will surely shed some light on how to modify it to accommodate the
newer theories.
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Asymptotic Analysis of the
Ginzburg-Landau Model of
Superconductivity: Reduction
to a Free Boundary Model

S. J. Chapman*T

Abstract. A formal asymptotic analysis of the Ginzburg-Landau model of superconduc-
tivity is performed and it is found that the leading order solution satisfies a vectorial
version of the Stefan problem for the melting or solidification of a pure material. The
first order correction to this solution is found to contain terms analogous to those of sur-
face tension and kinetic undercooling in the scalar Stefan model. However, the “surface
energy” of a superconducting material is found to take both positive and negative values,
defining type I and type Il superconductors respectively, leading to the conclusion that
the free boundary model is only appropriate for type I superconductors.

1991 Mathematics Subject Classification: 35R35, 82D55.

1. Introduction

It is observed experimentally that the magnetic field in the interior of a ma-
terial in the superconducting state is zero, even though there may be a non-zero
field in the region adjacent to the superconductor (this effect is usually known
as the Meissner effect). However, a superconductor can only exclude fields below
a certain magnitude, known as the critical magnetic field H.. If the field in the
adjacent region exceeds the critical magnetic field, then superconductivity will be
destroyed and the sample will gradually be converted back to the normally con-
ducting (normal) state, with the field gradually penetrating it. While this conver-
sion is occurring the superconductor might consist of an expanding normal region
separated from the remaining superconducting region by a smooth boundary T'.

*  The author gratefully acknowledges the financial support of the SERC during the

period that this research was carried out.
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The following free boundary model for this situation was derived in [6]:

OH . .
i V’H in the normal region, (1)
H=0 in the superconducting region, (2)
|H|= H. on I'y, (3)
curl HAn = —v,H on 'y, (4)

together with suitable initial and boundary conditions, where 'y denotes the
interface I' approached from the normal region, and v, is the normal velocity
of the interface. This model is derived from Maxwell’s equations, neglecting the
displacement current. Latent heat and Joule heating effects are also neglected, so
that the conversion 1s assumed to occur under isothermal conditions. Equation
(2) describes the Meissner effect, equation (3) describes the critical magnetic field,
and equation (4) follows from flux conservation across the interface T'.

The model (1)-(4) is similar in form to a one-phase Stefan problem, albeit in
a vectorial form, which is itself the simplest macroscopic model that could be
written down for the evolution of a phase boundary in the theory of the melting or
solidification of a pure material [7] (in certain two-dimensional situations (1)-(4)
reduces exactly to a one-phase Stefan model [16]. In its simplest dimensionless
two-phase form, the Stefan model is

T
68_15 =VT in both solid and liquid phases, (5)
T="T, on T, (6)
oT Ligquid
[—] = Lu,, (7)
I | 5114

where T' is the temperature, 7, is the melting temperature, L is the latent heat,
and [ ] denotes the jump in the enclosed quantity across the phase boundary T.
When the melting temperature is constant this model is know to be well-posed
just as long as neither superheating nor supercooling occurs, i.e. Tsoq < T,
Tiiquid > T [15]. In the superconductivity problem this corresponds to |H|> H.
in the normal region. If either of these conditions is violated the model is ill-posed
and thus needs to be regularised [8]. A popular way of doing this is to include
surface tension (Gibbs-Thompson) and/or kinetic undercooling effects [19] so that
Ty, 18 not constant, but given by

Ty = —0k — Pug, (1.8)

where K is the mean curvature of the interface, with a suitable sign, and o and 3 are
positive constants; ¢ is known as the surface energy. An analogous regularisation of
the model (1)-(4) was proposed in [17] in which it was suggested that the interface
condition (4) should be modified to

H.
|H|= H, — — ok, (1.9)
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as ' is approached from the normal region, where ¢ is the surface energy of a nor-
mal/superconducting interface. The physical justification for the addition of such
a term in the superconductivity model is not as clear as that for the solidification
model.

An alternative regularisation of the Stefan model is the phase field model [1]
in which the free boundary is smoothed out altogether by the introduction of an
order parameter F' € [—1, 1], such that (5) is replaced by

or LOoF
§+§WZVZT' (1.10)

The order parameter represents the mass fraction of material to have changed
phase from solid (F' = —1) to liquid (¥ = 1). Equation (10) is coupled with an
evolution equation for F', obtained by equating the time variation of F' to the
variational derivative of a suitably chosen free energy functional, in the form

oF

ot

here «, & and a are all positive constants. Numerical simulations of (10)-(11)

have been performed which seem to indicate their well-posedness [3]. Their most

intriguing feature from the present point of view however, is their ability to reduce

formally to the classical and modified Stefan models as a, & and in some cases «
tend to zero [2].

We aim here to perform a similar analysis of the superconductivity problem.
We first introduce the Ginzburg-Landau equations of superconductivity, in which
the phase boundary is smoothed as in the phase field model. We then perform an
asymptotic analysis as certain parameters in the model tend to zero, and retrieve
the vectorial Stefan model at leading order. An examination of the magnitude
of the magnetic field at first order will reveal the emergence of “surface tension”
and “kinetic undercooling terms”, as in the modified Stefan model. However, the
“surface energy” of a normal/superconducting interface can take both positive and
negative values, defining type I and type II superconductors respectively, and so
is not always a stabilizing influence.

1
= af?V?F + Q—(F—F3)+2T; (1.11)
a

2. Asymptotic Analysis

For a more complete introduction to the Ginzburg-Landau theory of supercon-

ductivity the reader is referred to [6,9,13,14] and the references therein. Here we

merely state the dimensionless; time-dependent Ginzburg-Landau equations as
ov i

. 2
_agzﬁ_Ter <§V—§A) U =Y(|U]* 1), (12)

—A2(curl)®A = \? (%—‘:‘ + v¢>) + % (V*VE¥ - UV )+ [T |* A, (13)
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where W is the (in this case complex) superconducting order parameter (with ¥*
denoting its complex conjugate), and A and ¢ are the magnetic vector and electric
scalar potential respectively, which are such that

H = curl A, E= —%—?—V(b; (14)

A is unique up to the addition of a gradient; once A is given ¢ is unique up to
the addition of a function of . Here «, A and £ are positive material constants;
A is known as the penetration depth, ¢ as the coherence length. The ratio of these
lengthscales is the Ginzburg-Landau parameter k = A/€.

Equations (12)-(14) are gauge invariant, in the sense that they are invariant
under transformations of the type

A — A+ Vu, ¢—>¢—68—°:, U — Pel/EA,

We may write the equations in terms of real variables by introducing the new,
gauge invariant potentials

Q=A—£MVy, <I>:¢>+£/\g—;<, (15)

where W = feiX. We then obtain the following equations for f, Q and ®:
e g oo g LIOE (10)
af?®+div(f’Q) =0, (17)
—MN(cur)’Q = A? (%—? + vq>) + Q. (18)

We seek limiting behaviour as A, ¢ — 0. We have the following proposition.
Proposition. In the formal asymptotic limit of the Ginzburg-Landau model (16)-
(18) as A, € — 0, with k = A/ fized, the leading order solution satisfies the
free-boundary model (1)-(4).

We assume that the solution comprises normal and superconducting domains
separated by thin transition regions. Away from any transition regions we seek
asymptotic expansions of the form

o FO x4
Q~QY4aQ® 4 ...,
H~HY 4+ HD 4+ ...
d~ 0 LA 4.

19
20
21

)
)
)
22)

(
(
(
(

We then find that either f(% = 0 or Q(O) = 0, corresponding to normal and
superconducting regions respectively. Proceeding to second order in these outer
expansions we find that f(!) = 0 in the normal region, and hence

3Q(0)
ot

+ Vol = —(curl)zQ(O), H® = curl Q,
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so that
0
6H_() — v2H®
ot ’

there, as in (1). In the superconducting region we find H = 0, and f(O) =1.

It remains to consider a local analysis of a transition layer between two such
regions. When local coordinates parallel and perpendicular to the transition region
are introduced, as in [4] we find that the leading order solution corresponds to a
stationary, one-dimensional transition, providing the velocity and curvature of the
‘interface’ are not too large. We find that the magnetic field and the potential are
both parallel to the interface, and that at leading order

(23)

=R =+ Q) (24)
Q" = f*Q, (25)
H=0q, (26)

where H and @) are the magnitudes of the magnetic field H and vector potential
Q respectively, and 1 = d/dz where z is the (stretched) coordinate normal to the
transition layer. In order for the solution to these equations to match with the
previously derived outer solutions in the normal and superconducting regions, we
require

f—1 @—0, as z— —oo (superconducting), (27)

f—0, as z—oo (normal). (28)

Integrating (24)-(25) once it is now easy to deduce!

Hﬁﬁasz—m)o. (29)
By matching, this means that, as we approach the phase boundary from the normal
region, the magnitude of the magnetic field tends to 1/v/2, which is equal to the
critical magnetic field in these units. Thus we have recovered the free-boundary
condition (3).
Beyond this level the asymptotic analysis becomes more intricate. By proceed-
ing to first order in the transition layer equations it is possible to show that

Z—00 Z Z—00

(1)
lim {8% + kﬁ”H}”} = o™ lim H",  i=1,2 (30)

(0)

where, to leading order, vy 7 1s the normal velocity of the phase boundary,

and /%(20) are the principal curvatures of the phase boundary, and HEO) and Héo)
are the components of the magnetic field in the principal directions. By matching
with the outer normal region these conditions can be shown to imply (4).

We have thus arrived at the free-boundary model (1)-(4) at leading order.

7

1 For a rigirous demonstration of this result see [5].
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If we continue with the asymptotic analysis we find that up to second order the
matching condition for the magnitude of the magnetic field as the phase boundary
is approached from the normal region is

H., - -
H|— .= A= { ol + o (&7 + 7)) (31)

where 7 and o are constants determined by the structure of the solutions to (24)-
(25) (o is the ‘surface energy’ of a normal/superconducting interface). As expected
there 1s a correction proportional to the normal velocity and a correction pro-
portional to the mean curvature of the interface. However, the surface energy o
may take both positive and negative values according to whether k < 1/4/2 or
& > 1/4/2, defining type I and type II superconductors respectively. The constant
3 also depends on the size of « in (16)-(18), but again may take positive and
negative values.

We recall that when the corresponding constants were positive in the modified
Stefan model, they stabilised what would have been an ill-posed problem in their
absence. Here it seems that the second term at least is only stabilising when
k < 1/4/2,i.e. for type I superconductors. Even in this case, because the stabilizing
terms appear only at first order they will not appreciably affect the solution until
the interface curvature or normal velocity becomes very large. Thus we expect
quite intricate morphologies, even for solutions to the Ginzburg-Landau equations.
Numerical simulations and experimental results seem to support this conjecture
[11,18,10,20].

For type II superconductors the correction terms are destabilizing, and thus
even in situations in which the free-boundary model is well posed, it may not
accurately represent the solution to the Ginzburg-Landau equations. A common
observation for type Il superconductors is that the normal regions form ‘cores’ of
size comparable to the thickness of a domain boundary [12]. In such a situation
the preceding asymptotic analysis, and therefore the free-boundary model, is not
valid.
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Time-dependent Ginzburg-Landau
models for superconductivity

Qiang Du* ¥

Abstract. We discuss analytical and numerical results for the initial-boundary value
problems of the time-dependent nonlinear Ginzburg-Landau equations which are evo-
lutionary macroscopic models of superconductivity. We present theorems on the well-
posedness of the equations and the convergence of semidiscrete finite dimensional Galerkin
approximations. Fully-discrete schemes are also studied here together with numerical ex-
periments.

1991 Mathematics Subject Classification: 82D55, 35A05, 35A40, 81J05.

0. Introduction

The time-dependent Ginzburg-Landau equations for superconductivity were de-
rived by Gor’kov and Eliashberg [15] based on an averaging of the BCS theory
(see also [2] and [25]). The equations are nonlinear evolutionary differential equa-
tions for the complex order parameter ¢, the real vector magnetic potential A
and the real scalar electric potential ®. These models have been widely used to
study the dynamics of the superconducting transition, especially for the type-IT
superconductors [1] where the generation and the interaction of “flux vortices” are
of great interests.

Here, we briefly discuss some recent works on the time dependent Ginzburg-
Landau (TDGL) equations. The paper is organized as follows: first, we present
some analytical results concerning the well-posedness of the initial boundary value
problems for the TDGL equations. Then, we consider the finite dimensional ap-
proximations. Both semi-discrete and fully-discrete approximations will be dis-
cussed. Finally, we present some preliminary results from our numerical experi-
ments. Due to space limitations, our discussion is not complete and proofs are
omitted. For more discussion, we refer to [6] and future reports.

This author gratefully acknowledges the assistance from the session organizers, Dr.
M.K. Kwong and Dr. C.Y. Chan.

7 Present address: Department of Mathematics, Michigan State University, E. Lansing,
MI 48824, U.S.A.. Email: du@mth.msu.edu
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1. Time dependent Ginzburg-Landau equations

The time dependent Ginzburg-Landau models of superconductivity are closely
related to the steady state Ginzburg-Landau models. The latter can be found in
many classic books on superconductivity, e.g., [2,25]. For a recent survey on the
steady state models, we refer to [7]. More results and references on the steady
state models may be found in [4,5,8-11,13,18,19] and [26]. The relations between
the time dependent equations and the basic hypotheses of the Ginzburg-Landau
theory of superconductivity were discussed in [6]. In [22] and its subsequent works,
J. Neu studied the asymptotic behavior of the vortex structure and its dynamics
for similar time-dependent G-L equations. For time-dependent models, see also
[4,5,12,17,21] and [23].

In order to present the models with simplicity, let us introduce a nondimen-
sionalized form of the free energy functional given by

Qw,A):/Q [|—£V1/}—A1/)|2—|—%(|1/}|2—1)2—|—|cur1A—H|2 Q. (L.1)

where & is the Ginzburg-Landau parameter and H the external field. For simplicity,
H is assumed to be constant here.

The steady-state Ginburg-Landau equations are the Euler-Lagrange equations
for the minimizers of the functional G. The time dependent equations may be
formulated as

oy ' ? ,
776—1?—1-277&(1)1/)—1— (—%V—A) b —+ [P =0 inQ, (1.2)
i * * 2 .
curl curlA:—E—2—(1/) Vi — V") — |¢|"A  in Q, (1.3)
K
where
0A
E=—+V0 . 1.4
o T (1.4)
The boundary conditions are
(évw“w) n=0 onTl, (1.5)
curlAxn=Hxn onT (1.6)
and
E-n=0 onl. (1.7)

The initial conditions are

P(x,0) = ¢o(x) in Q,
and

A(x,0) = Ap(x) in Q.
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We assume that [g(2)| < 1, a.e., which means that the magnitude of the initial
order parameter does not exceed the value at superconducting state.

One can naturally rewrite the equations as

oY Y
Urr +inr®y = o
9A oG
ot~ SA

where § denotes the first variation of the functional. The term ¢nx maintains the
gauge invariance of the equations [6].

A more general system of mathematical equations than (1.2-1.4) is given by:

oy . i . .
Ny +iady+ (EV—i—A) b —o(l— | =0, (1.8)

5%—‘:‘ —yVdiv A + curl curl A + 0V = —iw*w — V) — YA, (1.9)
and, often, augmented by div A = 0. The parameters 3,7,0 and x are usually
real while 5, o, 0 may take either real or complex values. Various special cases
have been studied in many areas. For example, (1.8) gives the complex Landau-
Ginzburg equations in the hydrodynamic stability theory when A and @ are set to
be zero. In the context of superconductivity, J. Neu studied cases where « = § =
0,0 = 1,80 £ 0, and n = 1 or i, corresponding to either irreversible or reversible
processes. We shall study the above general equations and their physical meanings
in the future. However, here we focus on (1.2-1.4), which is the only possible form
of (1.8-1.9) where the so called gauge invariance of the equations is perserved.

Throughout, for any non-negative integer s, H*(D) denotes the Sobolev space
of real-valued functions having square integrable spatial derivatives of order up to
s in a domain D. The corresponding spaces of complex-valued or vector-valued
functions are denoted by H*(D) and H?*(D) respectively. A similar notational
convention holds for other Sobolev spaces [3]. The following subspaces of H!(Q)
are also used:

H,()={QeHY(Q2) : Q n=0onT},

H.(div;Q)={QeHY(Q) : divQ=0inQand Q- n=0onT}.
To take into account the time-dependence, we let S = L?(0,7; L*(Q2)) and
V = L0, T; HL(Q2)) N HY0,T;L4Q)) .
Also, we let 8§ = £%(0,T; £L*(Q)) and
V= L0, T, HY Q) nHY0,T; £L4(Q)) .
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For convenience of study finite element approximations, we assume that € is
a bounded convex polygon or convex polyhedron in IR?, where d = 2 or 3. Results
can be extended to domains with smooth boundary if curved finite element spaces
are used.

2. Well-posed gauge choices

The time-dependent Ginzburg-Landau equations (1.2)-(1.6) with the prescribed
boundary conditions have the gauge invariant property, see [6,25]. Consequently,
it indicates that the time-dependent Ginzburg-Landau equations given above lack
uniqueness and thus are not well-posed. One must fix the gauge in order to obtain
mathematically well-posed equations. Such a procedure was done in [6]. Several
possible gauge choices were given, corresponding to one of the following conditions
on the solutions:

e div A =0;o0r

e divA =®;0r

e d=0.

Here, we focus our attention to the third gauge which eliminates the electric
potential ®. This is one of the most frequently used gauge choice in numerical
simulations, see, for example, [21]. All results apply to other gauges by means of
gauge transformations. In this gauge, the equations become:

. 2
n%—er(—év_A) Y-+ =0 inQ, (2.1)
%—?—I—curl curl A = —iw*w—ww— lv’A in Q. (2.2)
The boundary conditions are
Vi -n=0 onl, (2.3)
curlAxn=Hxn onl, (2.4)
A n=0 onTl, (2.5)

and att = 0, div A = 0 in Q.
First, the solution (¢, A) € VXV of equations (2.1)-(2.5) satisfies the following
weak formulation:

1)+ (|~ 2vu - au] |- Ivi-ad)

+ ([ =1, ) =0, VeH(Q);

(2.6)
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i(A, A) + (curl A, curl A) + (|¢]*A, A)
dt (2.7)

+ (iw*w —Vy*),A) = (H,curl A), YA cHL(Q).

Concerning the weak form, we have

Theorem 1. Given T > 0, if g € H* (), Ag € HL (div ;Q) and |[¢o(2)] < 1,a.e.,
then there exists a unique solution (¥, A) € V X V to the equations (2.1-2.3).
Moreover, it satisfies

2 2

o

] G

oo am+ [ |15

W(T)

0 0

] dr = G(¢o,Ag), Vi€ (0,T),
and there exists a constant ¢ > 0, only depend on the initial condition, such that
Idiv A(t)||Lo,r;L2(0) < ¢
WI<1, e,

Wl ez0 73200y < ¢

||cu1‘1 A||L2(07T;H1(Q)) <ec,
and

<ec.
L2(0,T;L2(Q))

div —

ot

The above results were first proved in [6] (Theorem 3.13 and Lemma 3.14) us-
ing techniques in [20,24]. They were also presented in [11]. Continuous dependence
on the initial data and other related results may also be found in [6]*. To study
the existence and uniqueness of the solutions of the above system, the following
modified problem was introduced [6]:

Find (¢°, A¢) € V x V such that

ad

(0 + (HW - A%/f] ! Hw - A%Z])
+ ([P = 1w 9) =0 Y eHHQ);

(2.6¢)

d . . . .
E(AE’ A) + (curl A€ curl A) 4+ e(div A, div A) + (Jo°|*A¢, A)

+ R { (éwﬁ MA)} = (H,curl A) VA € H.(Q) (2.7¢)

After the Congress, the author received a similar existence result given by Z. Chen,
K.H. Hoffmann and J. Liang for the TDGL equations in the second gauge ® = div A
on domains with C? boundary. They obtained an interesting H? regularity result for
those domains and used techniques that are different from those in [6].
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and the initial conditions are the same as the original equations, so that they are
independent of e.

Here, € > 0 is an arbitrary parameter. Note that the above modified system
reduces to the original system (2.6)-(2.7) when ¢ = 0.

3. Semi-discrete finite
dimensional approximation

Here, we present the semi-discrete Galerkin finite dimensional approximation of the
time-dependent Ginzburg-Landau equations in the zero electric potential gauge.
By semi-discrete, we mean only the discretization in spatial variables is considered.

In [6], we have studied abstract finite dimensional Galerkin approximations
for the system (2.6,),(2.7.). Let A, and Z,, be n-dimensional subspaces of H} ()
and H*(£2) respectively such that

UA” is dense in HL(Q), and UZ” is dense in H(Q) .
The standard Galerkin finite dimensional approximation may be given by:
Find (¥5(t), A5(1)) € Z, x Ay, such that
(V5(0), Viba) + (¥5,(0), &) = (V(0), Vi) + (4(0), ) Vi € Zn, (3.1c)

(VAS(0),VA,) 4+ (AS(0),A,) = (VA(0), VA,) + (A(0),A,) (3.20)

n

f()r a,ny An E An and
nd n n K n nrn ® n nrn

+ (5P = 1005, 0n) =0 Y, € Z,;

(3.3¢)

d . . . .
E(A;’ Ap)+ (curl Af curl A,) + ¢(div A, div A,) + (|1/)Z|ZA;, Ay)
(3.4¢)

+R { (iwg, ¢;An) } = (H,curl A,) YA, €A,.
K
The following result was proved in [6].

Theorem 2. Given T' > 0, if g € HY(Q), |o(2)] < 1,a.e. and Ag € HE (div ;Q),
then for e > 0,, {(V5, AS)} converges weakly in £2(0,T; H1(2)) x L2(0, T; HY(Q))
to the unique solution (¢, A) of (2.6,) —(2.7.) as n — 0. In addition, for e > 0,
(e, AL) converges strongly in L£2(0,T;HY(Q)) x L2(0,T; HY(Q2)) to the solution
(¥, A%) of (2.6¢) — (2.7,) as n — oo. a
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In [6], it was also shown that solutions of the modified problems converge
to the solution of the original system as ¢ — 0. Note also the first part of the
conclusion applies to the original TDGL where € = 0.

If we replace A, and Z, by Aj and Zj,, where A and Z;, are C? finite element
subspaces of HJ(Q) and H'(Q) respectively, defined on a regular quasi-uniform
mesh, parametrized by a parameter i that tends to zero, the corresponding solution
sequence (¢, AS) becomes a sequence of semi-discrete finite element solution
(5, A3). Assume that the spaces Ay and Zj are constructed in a standard way
and h is some measure of the size of the finite elements in the mesh. We assume
that the subspaces satisfy the following approximation properties:

inf |-t —0 ash—0 YiveH(Q)), (3.5)
YrREZh

inf [|[A—-Apl1 —0 ash—0 VAcHL(Q), (3.6)
AnEA

One may consult [14] for conditions on the finite element partitions such that

(3.5)-(3.6) are satisfied.

Therefore, by the theorem, we have

Corollary 3. Under the conditions of the previous theorem, for any € > 0,
the semi-discrete finite element approzimation (5, Ay) exists in [0,T]. More-
over, (5, AS) is uniformly bounded in V x V| independent of h and €. Fur-
thermore, for any € > 0, , the sequence (5, Af) converges weakly or weakly *
in V x V (and therefore strongly in S x S ) to the unique solution (v, A) of
(2.60) — (2.7¢) as n — oo. In addition, for e > 0, (¥5, AS) converges strongly in
L2(0,T; HY(Q2)) x L2(0, T; HY(Q)) to (¢, A¢) as n — oo. |

The finite dimensional dynamical system (3.3,) — (3.4¢) is a gradient system
[16], since the functional G, serves as a Lyapunov functional. Hence, we have

Theorem 4. Under the conditions of the previous theorem and the above assump-
tions, the w-limit set of the system (3.3.) — (3.4¢) is a subset of the equilibrium
points which consists of solutions of the following equations:

(|-Evui - anui] [-Lvor - agir)

(3.7.)
({51 = v, ") =0, Vot e 2t
(curl A7 — H, curl Ah) + e(div A, div Ah) + (|95 |2AS, Ah)
i - . 3.8
+§R{<£V¢;,¢;Ah)}:0, v Ah € A" (3:8)
O

Solutions of (3.7,) — (3.8,) are the finite element approximations of the steady
state Ginzburg-Landau equations. For a complete analysis, see [7] and [9].
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4. Fully-discrete approximations

Semi-discrete approximations only deal with spatial discretization and the result-
ing equations form a system of ODEs. Fully discrete approximations may indicate
how the ODEs can be solved. Here, we use the implicit Euler method as an illus-
tration. A interesting feature is the existence of a discrete Lyapunov like functional
corresponding to such type of approximations which may be very useful for long
time integration.

Let to =0, and t,,41 = ¢, + At,, where At, is the step size at the step n. The
initial approximation is given by H' projection. Define (1, Al) € Z* x A" by

(Veg, V") + (05, 0") = (Ve(0), VE") + (£(0), ") ¥ € 2o, (4.1)
(VAL VA" + (AL AM) = (VA(0), VA?) + (A(0),A") VAP e A" . (4.2)
For n > 0, we have the implicit Euler scheme:
ho o ah : P -
n (%td)n, 1/)h) + ([—évﬂ’ZH - AZ+1¢Z+1] ; [—évﬂ)h - AZ+1¢h])

+([|1/’Z+1|2_1] Z+1a1/~’h):0, VihEZh;

(4.3)
h h
(A”‘H —An h h Th
T,A ) + (curl Ay, — H,curl A")
+ e(div AZ+1a div Ah) + (|¢Z+1|2AZ+D Ah) (44)

i * * A A
+ (%( Z+1V1/’Z+1 - Z+1v Z+1)aAh) =0, VA"eA".
Let us define

TH6,A) = G, A) + /

Q

k2 _ ARY2
<€|div Al* + © Aif)n) + (A A?”) ) dQ. (4.5)

One may show that J” has at least one minimizer in Z* x A* which, in fact,
is a solution of (4.3)-(4.4). Hence,

Theorem 5. For any h > 0, At > 0 and € > 0, there exists a solution to the
system (4.3)-(4.4) for any n. Moreover, Vn=20,1,...,

T (Yngr, Anpy) < T (4, AR) -
Lemma 6. Let C' > 0 be a constant. If At and Ath=%? are sufficiently small,
then for any ¢ > 0, the functional J" is convex for any (¥", A*) in the set
M={W" AN € ZM x A [ [ loa < O, A" < O

1
and EV¢Z+1 +AZ+1¢Z+1

<CY.
0]
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From theorem 5, uniform a priori estimates can be obtained for ||v/* (|04, || A" ||o
and LV, 4+ AL +11/)n+1||0 Using the convexity of the functional, we can get

Theorem 7. If Ath=¥? is sufficiently small, then for any € > 0, the functional
T has a unique global minimizer which is a solution of (4.3) and (4.4). O
Remark. In case ¢ is taken to be a positive constant, independent of h, then, the
proof of the above theorem may be modified to show that if At is small enough,
then the global minimizer of 7 is unique for any h > 0, i.e., we do not need to
assume that Ath~%? is small. Detailed discussion will be given in future reports.

Remark. In fact, the same proof is valid for the solution of the following problem
which, by itself, is a time-discretized version of the original time-dependent G-L
equations:

<¢n+1A Yo , 1/)) <|:_£V1/)n+1 - An+11/)n+1] , [_ivJ) - An+11/~)])
R R
+ (o1 = Ung1,¥) =0, Vo € HH(Q);

(An+1 - An
At
+ e(div Apy1, div A) + ([¢ng1|*Anyr, A")

+ (i(¢:+lv¢n+l 1/)n+1v1/)n+1) ) - 0 v A € Hfll(Q) .

, A) + (curl A, — H, curl A)

Further analysis also gives the following result that is useful in implementing
numerical methods.

Corollary 8. There is no local mazima for the functional J". a

For given h, At,e > 0, the asymptotic behavior of the finite element solution
(¥, A%) can be studied. Using compactness, it is straightforward to get

Lemma 9. If At is small enough, the limit set of the sequence {(4!, A"} is a
subset of the solution of (3.7,) — (3.8,). O

The solution set of (3.7.) — (3.8,) does not consist of only isolated points,
even with € > 0 because of the U(1) symmetry in the order parameter. One can
show, however, for almost all , there are only finite number of isolated solutions

0 (3.7.) — (3.8¢), modulus the U(1) symmetry. It remains to be seen whether this
will imply that the sequence {(¥?, A} is convergent for almost all «.

5. Numerical experiments

Some preliminary numerical experiments have been performed on a Sun Sparcsta-
tion using a two-dimensional finite element code similar to the one developed in
[9] and [10]. The code may be used to study the formation and evolution of the
vortices as well as flux pinning in inhomogeneous media. More extensive reports
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on the experiments will be given in a joint report with M. Gunzburger and J.
Peterson. Here, let us describe a simple experiments in which the TDGL equations
are solved using the above fully discrete schemes on a two-dimensional square box.
The code uses piecewise biquadratic polynomials on a uniform spatial mesh. The
Ginzburg-Landau parameter is k = 3 with external field at H = 1.5. The solution
should correspond to a vortex state in this setting. The penetration depth is taken
to be three-tenth of the box size. For the particular experiment described here,
initial conditions correspond to a pecfect superconducting state. We hereby include
a few plots. Figure 1 shows the decay of the free energy and the magnetization
in time. Figure 2 and Figure 3 give contour plots of the magnitude of the order
parameter. Vortices first start to form near the midpoint of the boundary and then
settle down in the interior.

G vl
4
1
5 0.8
3 0.6
0.4
5 0.2
0 5 10 15 20t 0 5 10 15 20t

Figure 1. Free energy vs. time and Magnetization vs. time.

L/ | Db AN .

Figure 2. Magnitude of the order parameter
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Figure 3. Magnitude of the order parameter
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Ginzburg-Landau type
models for superconductivity}

Qiang Dut, Maz Gunzburger?, and Janet Peterson®

Abstract. Three different models for superconductivity are presented. All are based on
the first, the Ginzburg-Landau model for superconductivity in bounded, homogeneous,
isotropic samples. The second is a periodic model for which the physical variables are
asssumed to be periodic with respect to some prescribed lattice in the plane. The third
model 1s for variable thickness thin-films; this model may be useful in the study of flux
pinning mechanisms.

1991 Mathematics Subject Classification: 81J05, 35J60.

1. Introduction

The Ginzburg-Landau model for superconductivity, introduced in 1950, has
met with great success in describing macroscopic physical phenomena in super-
conducting materials. The model introduced by Ginzburg and Landau pertained
to samples of finite size that, insofar as their material properties were concerened,
were isotropic and homogeneous. In Section 2, we briefly describe this model.
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For various reasons, variations to the basic model introduced by Ginzburg and
Landau are neceesary in order to successfully describe phenomena in supercon-
ductors. For example, for type-II superconductors, the appearance of vortex-like
sructures over length scales of a few hundred Angstroms obviates the use of finite
size samples in a computational simulation. For this reason, the great majority of
such simulations have been carried out using periodic models for superconductiv-
ity; these models have also been extensively used in analytical studies. Here, in
Section 3, we describe a periodic model for superconductivity in the plane.

Real superconducting thin-films are not necessarily of constant thickness, and
indeed, there are reasons why one may want to purposely introduce thickness
variations in such samples. In Section 4, we describe a variable thikness thin-film
model.

We should mention that there are other variants of the basic Ginzburg-Landau
model that have been proposed and studied. For example, there are models for
anisotropic superconductors such as the Lawrence-Doniach layered model and the
anisotropic mass model. We do not cnsider these here, nor do we cosider time
dependent models. Also, we assume that the reader has some familiarity with the
basic Ginzburg-Landau model for bounded samples.

2. The finite sample Ginzburg-Landau model

There are many avaiable expositions of the Ginzburg-Landau model for supercon-
ductivity in finite samples; see, e.g., [1], [3], [4], [8], [14], [17], and [18]. Here, for
the sake of completeness, we simply state the governing equations for the model.

The dependent variables of the Ginzburg-Landau model are the complex and
scalar-valued order parameter ¢ and the real and vector-valued magnetic potential
A. The nondimensionalized physical variables of interest are the magnetic field
h = curl A| the current j = curlh, and the density of superconducting charge
carriers Ny = [¢]?. The sample occupies the domain Q whose boundary is denoted
by I'. The Ginzburg-Landau equations are given by

. 2
(év+A) -+ Y =0 inQ
and

(Y*Vip — V) — [Y)?A +curl H in Q,

Jj=curlh = curl curl A = -
2K
where H denotes the applied field and x denotes the Ginzburg-Landau parameter.
We have the boundary conditions

(£V1/)—|—A1/))~n:0 onI', (2.1)

and

curl Axn=Hxn onl.
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We note that these equations may be derived by minimizing the Gibbs free energy
2

gw,A):/ﬂ(fn—|¢|2+§|¢|4+‘(;—'v+A)¢ +|h|2—2h~H) 10

over a suitable function space. We note that generalizations of the boundary con-
dition (2.1) have also been proposed; these stipulate that the vanishing right-hand
side be replaced by a term proportional to the order parameter.

3. A periodic Ginzburg-Landau model

We now turn to a periodic Ginzburg-Landau type model for superconductivity.
This model, or variants of it, has been extensively used in analytical and compu-
tational studies of superconductivity. See, e.g., [2], [6], [9], [10], [11]-[13], [15], and
[16]. Details concerning the presentation given below may be found in [9] and [10].

Given two arbitrary vectors t; and t, that span IR?, we say that a function
f(x) is periodic with respect to the lattice determined by t1 and to if

flx+t) = f(x) fork=1,2and ¥x € R?.

Given any point P € R?, a cell of the lattice with respect to the point P is the
open parallelogram Qp C IR? having a vertex at P and two sides aligned with the
lattice vectors t; and ts. We assume that the ectermal field 1s directed normal to
the plane of the lattice so that H = (0, 0, H)T and then also h = (0, 0, h)7.

The basic assumption of the periodic Ginzburg-Landau model for supercon-
ductivity concerns the periodic nature of the physical attributes of the supercon-
ductor, 7.e.,

the density of superconducting charge carriers Ny, the magnetic
field h, the current j, and the free energy density are periodic with
respect to the lattice vectors t; and ts.

In terms of the magnetic potential A and order parameter 1, these infer that
1
curl A, |¢], and (—gradqb — A) are periodic, (3.1)
K

where ¢ denotes the phase of the order parameter, i.e., v = |1]|e’®. Note that
the magnetic potential and order parameter themselves are not assumed to be
periodic.

Another important notion is that of fluroid quantization. In the present con-
text, we have that

kB|Q| = 2mn, (3.2)

where n denotes the integer number of fluxoids associated with the lattice cell {2p,
|2] is the area of the lattice cell, and B = (1/|Q|)fﬂp h df2 denotes the average
magentic field over the lattice cell.



Ginzburg-Landau type models for superconductivity 25

The pairs (¢, A) and (, Q) are said to be gauge equivalent if there exists a
x € HZ_(IR?) such that

loc
» 1
(=v¢e* and Q=A+4 —grady.
K

We then have the following result which allows one to deal with a periodic reduced
magnetic potential.

Proposition 3.1 Let A and ¥ = |)]e'® satisfy (3.1). Let
B ]}2
Ay = — .
0 2 <_$1)
Let Q be defined by

AQ = —curlcurl A Vxe R? and Q periodic
and let
¢ = e = [t = [ylet,
where w = ¢ + v and x € HE (R?) satisfies

1
—grady =Q—-—A—Ay.
K

Then, (¢, A) is gauge equivalent to ((,Q — Ag). Moreover, Q and curl Q are
periodic, Q s uniquely determined, divQ = 0, and, of

gp(x) = —g(x xtr), k=1,2,
then
Ao(x+t;) — Ao(x) = —grad g (x), k=12
and
wx+ty) —w(x) = kgr(x), k=1,2.

Furthermore, the magnetic field h and the density of superconducting charge car-
riers may be recovered from ¢ and Q through the relations

h=curlA =curlQ+ B and N, = |1/)|2 = |C|2

The Gibbs free energy is invariant to gauge transformations, so that, with
repect to the lattice cell Qp, it may be written in the form

1
¢, = [ (fo- kPl
2 (3.3)

—I-‘(égrad —I—Q—AO)C

+ |curl (Q — A0)|2) dQ},
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where , Q, and Ay satisfy the results of Proposition 3.1.

Denote the right, left, top, and bottom sides of the parallelogram Q2p by I';1,
I'_1, T2, and T'_a, resepctively. Note that for k¥ = 1 or 2, I'yy is the locus of
points y € R? such that y = x + t; for x € I'_.

The “periodic” Ginzburg-Landau model is then to minimize the free energy
(3.3) over all appropriate functions ¢ and Q, i.e., functions having one square
integrable derivative that also satisfy

C(x4tg) = C(x)eF ™) YxeTl_ 4 k=12, (3.4)
Qx+t;)=Q(x) VxeTl_;, k=12, (3.5)

and
divQ = 0in Qp . (3.6)

These constraints are motivated by Proposition 3.1.

Standard techniques of the calculus of variations then yield the differential
equations

curleurl Q + [¢]*Q + R {C*(égrad - AO)C} =0 inQp
and
(“grad — Au) - (—grad —Ao)C +(IQF + [cf” - 1)¢
+2Q - (égrad —Ag) =0 inQp
and the natural boundary conditions

(grad|C|)|x+tk = (g]ﬁ‘ad|C|)|x Vxel_;, k=12,

curl (Q — Ap)|xtt, = curl (Q — Ap)lx VxeTl_p k=12,

and

<] (grade — £(Q = A9)) Lxse,
= ICI(gradd —r(Q— Ao))lx VxeT_ k=1,2,

where w denotes the phase of (. Of course, (¢, Q) also satisfy the essential condi-
tions (3.4)-(3.6). The various boundary conditions imply that the magnetic field,
the current, and the density of superconducting charge carriers are periodic across
a lattice cell.
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An examination of the periodic Ginzburg-Landau model indicates that the
model is uniquely specified once &, Ag, ¢1(x), g2(x), and Qp are chosen. Note that
Ay is determined once the average magnetic field B is specified and gy, (x), k=1,2,
are determined once B and the lattice vectors ty, k = 1,2, are specified. Of course,
these lattice vectors and a specification of the point P completely determine the
lattice cell Qp. Thus, choosing particular values for &, B, P, t, and t, suffices to
uniquely specify the model. However, not all of these may be chosen independently;
they are related through the fluxoid quantization condition (3.3) which contains

the additional parameter n, the number of fluxoids associated with the lattice cell

Qp.

It is known that an equilateral triangular arrangement of vortex-like struc-
tures having one fluxoid associated with each vortex yields the smallest value for
the Gibbs free energy. Thus, the preponderance of calculations employing peri-
odic Ginzburg-Landau models have been carried out for such an arrangement.
For example, one could choose n = 1 and use lattice vectors corresponding to a
equilateral tringular lattice, i.e., t; and to having the same length and having an
angle of /3 between them. Alternately, one could choose n = 2 and a rectangular
lattice defined by orthogonal lattice vectors having lengths in the ratio of v/3. In
either case, the absolute lengths of the lattice vectors are then determined from &,
B, n, and the fluxoid quantization condition (3.3).

Note that we are specifying the average field B, and not the external field
H; this is a matter of convenience. Note that once (¢, Q) is determined (from a
particular choice for B), one may deduce the corresponing external field through
a quadrature; see [5].

A variety of results concerning solution of the periodic Ginzburg-Landau model
may be found in [9]. The analysis of finite element approximations for this model,
as well as the results of some computational experiments are found in [10].

4. A variable thickness thin-film model

Thin-films of superconducting material are often modeled as two-dimensional ob-
jects. The third dimension, i.e., that across the film, is eliminated by an averaging
procedure. If the material properties of the material, viewed as a three-dimensional
object, are homogeneous, and the thickness of the film is invariant with position,
then the result of the averaging process will be a two-dimensional model having
constant material properties. This is exactly the type of situation addressed by
the great majority of the analyses and approximations extant in the literature.
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In practice, superconducting thin films are not of constant thickness. Varia-
tions in thickness have significant effects on the electromagnetics of the supercon-
ductor, e.g., there is evidence that vortices can be trapped within narrow regions.
One would like to develop a two-dimensional model that can account for thick-
ness variations. Any such model would result from some sort of averaging process
across the film. This averaging process will vary from point-to-point in the plane of
the film, and introduce the variable thickness into the coefficients of the resulting
two-dimensional model. Details concerning the derivaition of the model discussed
below, as well as a variety of results concerning the model, may be found in [7].

Here, we consider the case where a three dimensional thin layer in R? is
symmetric with respect to the (z, y)-plane. The z-axis is thus perpendicular to the
symmetry plane of the film. Thus, the thin-film Q. can be defined by

Qc={(z,9,2) ER? | (z,9) € Q CR?, 2 € (—ea(x,y),a(x,y)) },

where ¢ is small parameter and a(z,y) is assumed to be smooth and a(z,y) >
ap > 0 for all (z,y) € Qp. The external field is directed perpendicular to the plane
of the film, i.e., H = (0, 0, H)T. Our interest is to study the G-L functional and

its minimizers defined on €, as ¢ — 0.
We define the modified free energy for the film by
2
) dQ2
—1—/ (Jeurl A — H|? + [div A|*) d2.
Q

(%W | (-iv-a)e

A= [

€

We shall see that the inclusion of the last term merely designates a particular class
of gauge choices for the magnetic potential. We also let

o1

Formally, we write

U2 = 30

j=0

and

for z small, 7.¢., ¢ small. In the sequel, we let V and V denote the projections of
a three-vector V € R? onto the (z,y)-plane and the z-axis; note that V-V = (

and V+V =V.
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It can be shown that

1

. 2
:/ﬂa(%(hﬁop_l)z‘i“(%@‘h&o) o ) Q)

+ / a (|curlA0 —HP? + A1) + a_2|diva;&0|2) dQ .
Q

2
)dQ

—1—/ (a|curlA0 — H|? +a_1|divaA0|2) dQ .
Qo

This result motivates us to define the functional

FattosAn) = [ a G(woﬁ ~ 0 |(£94 o) v

Note that Fy involves only an integration over the two-dimensional planform g
of the film, and that it also depends only on a two-dimensional magnetic potential
Ao(x,y). Formally, one can show that if (¢/, A) is a minimizer of Fo in H(Q) x
H! (Q.), then (g, Ag) is a minimizer of Fy in H'(Qq) x H! (2p). Moreover,
min Fo = min &
H(Qe)xH (€2) H (Q0)xH (Q0)
For a domain P in IR? or IR?, let us introduce the function space

H.(P)={QeH(D) : Q- n=00nD}.

Also, HY(D) denotes the space of complex-valued functions whosse real and imag-
inary parts belong to H1(D). Then, we have the following results. First, we have
a result about the equivalence of minimizers of Fy and }:0.

Next, we have an existence result about minimizers of Fj.

Theorem 4.1. F, has a minimizer (1o, Ao) in HY(Qo) x HL (Q0). Moreover, every
minimizing sequence of Fo in H(Q0) x HL (0) has a subsequence which converges
strongly to a minimizer of Fo in H' (o) x H](Qo).

One may now derive the Euler-Lagrange equation for the minimizer of Fy in

H(Q0) x HL(Q0); these constitute the variable-thickness Ginzburg-Landau equa-
tions and are given by

(é@—k Ao) - a (é@ + Ao) ’l/)o + Cl(|’l/)0|2 — 1)’[/)0 = 0 iIl Qo ;

curl (acurl Ao) + aV(div Ao) + aV(a_1Va . Ao)

: 4.1
I‘iaw;wo—%wm—a|¢o|2Ao+curl<aH> in o, -y
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(éV’l/JQ—FAQ’l/JQ)HIO on Fo,
and

curle =H only.

If we choose the the gague
div (¢Ag) =0

then (4.1) simplifies to
curl (acurle) = —ia(d)ng) — Yo V5 — a|1/)0|2A0 +curl(afl) in Q.

A comparison of these equations with those of Section 2, the latter restricted
to the planar case, reveals the role of the thickness function a(z, y) in the variable
thickness model. Note that if we set @ = 1 in the above equations we recover those
of Section 2.

We now turn to the question of the consistincy of the variable thickness model.
We have denoted a minimizer of Fy, i.e., a solution of the variable thickness
Ginzburg-Landau equations by (1/)0,;&0). For any € > 0 we denote a minimizer
of the functional F, 1.e., a solution of the constant coefficient, three-dimensional
Ginzburg-Landau equations over the three-dimensional domain €., by (¢, A¢).
We want to show that, in an appropriate sense, (¢, Ao) is the limit of the sequence
of minimizers {(¢¢, Ac)} as e — 0.

To this end, let

B 1 €a
¢6($ay):ﬂ/ ’l/}e(l‘,y,Z)dZ, V($ay)EQO

and

_ 1 €a
A, = — Az, y,2)dz, ¥ (2,y) € Q.

2ea J_.,

Thus, for any (x,y) € Qo, . and A, are the averages across the film of the solutions
of the three-dimensional Ginzburg-Landau equations in the film, the latter viewed
as a three-dimensional object. We then have the following consistency result.

Theorem 4.2. The sequence {(te, Ao)} converges strongly to a minimizer (3o, Ao)
Offo m Hl(Qo) X H}L(Qo)

This shows that the average of the solution in a three-dimensional thin-film
converges, as the thickness parameter € goes to zero, to the solution of the two-
dimensional variable thickness thin-film model we have derived.
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Dynamics of Vortices in Superconductors™

Weinan ET

Abstract. We study the dynamics of vortices in type-1I superconductors from the point
of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence,
uniqueness and regularity of strong solutions for these equations. We then derive reduced
systems of ODEs governing the motion of the vortices in the asymptotic limit of large
Ginzburg-Landau parameter.

1991 Mathematics Subject Classification: 65F05, 65N22, 82D55.

1. Introduction

In this paper, we report some of our results on the study of time-dependent
Ginzburg-Landau (TDGL) equations with application to the modeling of super-
conductors. The present paper contains two topics: the well-posedness of TDGL
(including existence, uniqueness and regularity) and the derivation of dynamical
equations governing the evolution of vortex solutions.

The basic phenomenology of superconductivity is described by the Ginzburg-
Landau free energy density [5]:

h *
(Tv - e_A) ¥
7 ¢

Here m* and e* are the effective mass and charge of the “Cooper pairs”, ¢ is a
complex order parameter, with 1| representing the density of super-electrons, B
is the induced magnetic field, A is the vector potential: B = V x A. In the absence
of fields and gradients, f is reduced to the condensation energy: f = a|¢|*+ §|g0|4,
where the temperature-dependent constants «(7') and 3(T) satisfy:

T

a(T) ~ ag (i - 1) . B(T) >0,a0>0. (1.2)

2 B2

o, Py
— — 1.1
+alel + Slel* + (1.1)

f_l

T 2m

Therefore for 7' > T, the minimum free energy occurs at |1|> = 0 (normal state),
whereas for T' < T,, the minimum free energy occurs at [1)|> = —a/8 (supercon-
ducting state). T¢ is the transition temperature.

*  This work was partially supported by the Applied Mathematical Sciences subpro-

gram of the Office of Energy Research, U.S., Department of Energy, under contract
W-31-109-Eng-38
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(1.1) defines two length scales: the penetration depth A(T') which is the char-
acteristic length scale associated with the variation of the magnetic field, and the
coherence length £(T") which is associated with the variation of the order parameter

(/R
9 B 9 m*e?
YO = semy YD e (13)
These two length scales are typically temperature-dependent, and diverge as T" —
T.. However, their ratio
_ D) (1.4)
&(T)
is a roughly temperature-independent quantity and characterize the property of
the material. « is called the Ginzburg-Landau parameter. It is known that if k <
1/\/5, the surface energy of a normal-superconducting interface 1s positive, and the
material is called a type-I superconductor. If & > 1/4/2, then the surface energy
is negative and the material is called a type-1I superconductor.

Type-1I superconductors exhibit an additional phase, called the mixed state,
besides the usual normal and superconducting phases. This occurs when the exter-
nal field H is between the lower and the upper critical fields H., and H,,. In the
mixed state, a superconducting bulk sample is shredded by tiny tubes of normal
states where magnetic field penetrates. These tiny tubes are called vortices since
there 1s a screening current flowing around each of the vortex.

When a transport current is applied to the sample, the vortices will move be-
cause of the various forces acting on them. From a phenomenological view point,
the vortices typically experience the Lorentz force, the Magnus force and the vis-
cous drag force. It is established that the motion of vortices causes resistance.
Therefore, there 1s major theoretical as well as practical interest in studying the
dynamics of vortices.

In this paper we derive reduced system of ODEs which govern the dynamics
of the vortices in the asymptotic limit k > 1. We remark that typical high tem-
perature superconductors such as YBCO and BiSCCO have rather large values of
K (between 100 and 200). Although the Ginzburg-Landau equations have to be
modified to describe the phenomenology of high 7, materials, the techniques we
develop are sufficiently general that we expect similar results can also be derived
for the high 7. materials, using for example the layered models [2].
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2. Preliminaries

Our starting point for the dynamics of vortices is the TDGL equation:
e* 6 [ fdPx
2] (sot +i so) = (2.1)
together with Maxwell’s equation

C
— B=J 2.2
47TV X J (2.2)

Here V is the electric potential, J is the total current. The time-derivative of ¢
has to enter in the combination ¢; + i% V¢ because of the requirement of gauge
invariance: If (¢, A, V') is a solution of (2.1)-(2.2), then (¢', A’, V') should also be

a solution where
Ce* 1
P =peT T A= A=V, V' =V+- (2.3)
c

and 7 1s an arbitrary scalar function. The total current consists of two parts: the
normal part J, which obeys Ohm’s law and a super-current J:

J=Jn+Js = 0nE + o] v, (2.4)

Here o, is the normal state conductivity, % is the electric field, vy is the super-
electron velocity:

1 1 *
E=—= A -VV, v,= — (hve - e—A) (2.5)
C m C

6 1s the phase of the order parameter .

We nondimensionalize these equations by choosing new variables: ¥ — Az/,
o — @op’, A — XHoW2A', t — tot’, V. — VuV’, where ¢f = —a/p,
Hy = (—47@)1/2g00, to = 4o, A2/c?, Vo = /\ZHO\/i/(toc) The nondimensional-
ized equations are (omitting the primes)

1 , 1
Y(—pitiVe) = (V= APp+ (1= el

Vo (2.6)
At+VV:—V><V><A+|g0|2(7—A)
where
. _76*‘/0
o ho

~v* depends on the properties of the material been studied.
(2.6) holds inside the sample 2. Naturally, we associate (2.6) with the follow-
ing boundary conditions on 9€:

(£Ve+4p) -n=0 (2.7)
K
VxAxn=Hxn (2.8)
E-n=0
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Here n is the outnormal on 9Q, H is the external field. (2.7) is a consequence
of (2.1) in nondimensionalized variables. (2.8) is a statement that there is no
surface current present at the boundary. Therefore the tangential component of
the magnetic field should be continuous. We should also assign an initial data to

(2.6)-(2.9):

¢ =po(x), A= Ag(). (2.10)

Clearly the solutions of (2.6) ~ (2.10) cannot be unique because of the free
choice of gauge. It is sometimes important to fix the gauge. It turns out that
one convenient way of fixing the gauge, particularly for the purpose of numerical
computations, is to make the electric potential zero.

In the rescaled variables, we have as k — 400,

Uk
H, ~ 2=
K

, He, ~ k. (2.11)
Therefore under a wide range of magnetic fields, the material is in the mixed
state. Before studying the dynamics of vortices in this state, we will prove the
basic well-posedness theorems for the initial-boundary value problem (2.6)-(2.10).

3. Existence, Uniqueness and Regularity

In this section we outline the argument and a priori estimates needed to establish
existence, uniqueness and regularity of strong solutions for (2.6)-(2.10). The key
to all of these is the observation that with the choice of gauge such that the scalar
potential is zero, (2.6)-(2.9) can be written as

A, = A
5A (3.1)
Ve OF(A ) '
K 0P
where
Fag)= [{|57 - el 4 Lol
R R A AL AR (3.2)
+(V x A)? —2(V x A) - H}d’x
(3.1) implies that
[ pia, o)de + “/Mzd?’ +/ Ll (3.3)
R xT —_ e x —_— r =Uu. .
dt ¥ | |63 5A
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If F(Ag, po) < 400, we obtain from (3.3)

oF 2
F(A(- 1 /)/{ ‘ ‘}fxﬁ 5
< F(Ao, 800)~
This is the basic energy estimate.
Next let ¢ = fe  f > 0. Using (2.6) we obtain an equation for f:

,,y*
_ft—_Af+ (1-7 ‘——A
X (3.5)
af
— =0 ato
on

where €2 is the domain occupied by the sample. A standard application of the
maximum principle gives: If 0 < f(x,0) < 1, then we have for ¢t > 0,

0< fla,t) < 1. (3.6)

(3.4) gives control on the L%-norm of B = V x A. To control A, we also need
to estimate V - A. From (2.6), we have

(V- A= —(ePV - A+ VIgP A) - 5 (PAp— A7) ()

This, together with (3.4) and (3.6), gives an additional estimate for V - A

max /(V CA)? dPr < O(T). (3.8)

0<t<T

(3.4), (3.6) and (3.8) are the key a priori estimates needed to establish the existence
and uniqueness of strong solutions. Since the rest of the details are more or less
standard, we will omit them and refer the interested reader to the paper of Du [3]
who has independently found these estimates and proved the following result:

Theorem Assume that oo, Ag, H € H(Q). Then exists a unique solution (¢, A)
of (2.6)-(2.10) (with V = 0), such that for any T > 0,0 € L*=(0,T; H' (Q)) N
L2(0,T; HX(Q)), A € L>=(0,T; HX(Q)), VxA € L>=(0,T; L% Q))NL*(0,T; HX(Q)).
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4. Dynamics of Interacting Vortices

In this section we derive reduced systems of ODEs which govern the evolution
of interacting vortices in the asymptotic limit as Kk — oo. One difficulty in this
asymptotic analysis is the scaling of the different time scales. Since ¢ and A have
different length scales, we expect that their typical time scales can also be very
different. However, the relative time scale of ¢ and A is a material-dependent
quantity, and it is difficult to decide how it should behave as Kk — +o00. Therefore
we will take the relative time scale of ¢ and A as another parameter ¢ and study
the distinguished limit as 6 and % —— 0. Here we will only study the case when
8§ = O(1). We refer the interested reader to [4] for details of the other distinguished
limits.

In this paper we will restrict ourselves to the following situation: an infi-
nite cylindrical sample is placed in an external field parallel to the axis of the
cylinder. In this case, the vortices are columnar and we only have to consider a
two-dimensional problem in the plane perpendicular to the axis of the cylinder.

The basic phenomenology is the following. We have N vortices moving in the
plane. Their core sizes are of O(%), and they are O(1) distance apart. Let € = %,
we write (2.6) as

y8(epe + Vi) = (—ieV — A)p + (1 = o)) (4.1)
A+ VV = =V x Vx A+ |p]*(eV0 — A)

where v = 4% /4.
We will restrict ourselves to the case when § = 1. Rescale time ¢ = %'y and
omit the primes we get

o +7iVe = (—ieV — Ao + (1 — |o]P)e
4.
CA4VV =-VxV x A+ |p|*(eV0 — A). ((4.3))
y

We proceed to analyze (4.3) using matched asymptotics. For simplicity we choose
the zero-electric potential gauge. It can be checked easily that the procedure we
follow does not depend on the gauge.

Outer solutions:

It is well-known that the flux carried by each vortex is quantized: Let us
estimate the magnitude of the flux quanta. Away from the vortex core, the super-
electron velocity is essentially zero. Therefore we have

7{@5 dl =0 (4.4)

where the line integral is evaluated sufficiently far from the vortex core. Since
vs = eVl — A we get

j{Ale:Gj{VHdE:Qﬂ'ne. (4.5)
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Here n = % § VOd( is the Poincare index of the vortex. It is known that if £ > Lz’

then vortices with multiple indices (|n| > 1) are unstable. Therefore we will assume
that the Poincare index of the vortices satisfy |n| = 1.

Denote by &;(t) the location of the j-th vortex and n; its Poincare index. The
total magnetic flux

/Hdzx:j{A~d£:2ﬂ'€an (4.6)
Q J

o)
is of O(¢). Based on this information, we make the following ansatz:
o(x,1) = po(x,t) + epr(x, 1) + o, t) + ...
Az, 1) = eay(x,t) + 2ar(x, ) + . .. ((4.7))
H(z,t) = ehy(x,1) + ho(x, ) + . ..
(4.7) should hold outside the cores of the vortices. Substituting (4.7) into (4.3) and

collecting equal powers of ¢, we get a hierarchy of equations. The O(¢%) equation
is:

(1= lpol*)po =0 (4.8)
(4.8) implies that
lpol =1, o = ™0 (4.9)
The O(¢) equations are:
Regog1) = 0 (4.10)
—VxVxa —a; =0 (4.11)
or
Ahy —hy =0 (1.12)

(4.12) holds in the punctuated region outside the vortex cores. The boundary
condition for h; near these cores are obtained from the inner solutions.
Inner solutions:
To study the inner solutio? )in the core of the j-th vortex, we introduce the
z—=£;(1
€

stretched coordinates X = , and expand the variables as follows:

QDIq)Q(X,t)—i—E q)l(X,t)+
A=c A(X, 1)+ As(X, 1) + ... (4.13)
H=¢ H(X, 1)+ Ha(X, 1) + ...

We immediately see that A; should be zero since otherwise it will contribute to
O(1) terms in H. Substituting (4.13) into (4.3) and collecting equal powers of e,
we get, at O(e°):

Ay + Do(1 — |[Bp]?) =0 (4.14)
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~V XV x A — %[60v<1>0 - @Ovio] =0 (4.15)
or
AH; — %v x [50V<I>0 - <I>0V50] = 0. (4.16)

These equations describe the leading order core structure. We look for solutions
which take the form:

Bo(X,1) = fo(R)e™™? H(X,t) = Hi(R,t) (4.17)
where (R, 6) is the polar coordinate of X, n; = +1. (4.14) and (4.16) become:

1 1
Pt (112 = ) fo =0 (4.18)
H! + ;EH’ +n szfo =0. (4.19)

Since the order parameter should vanish at the center of the core, and match to
the outer solution outside the core, f; satisfies the boundary conditions:

fo(0) =0, fo(+oc) = 1. (4.20)
It can be proved [1] that such solution exists and satisfies
1
1-fi(R )= 7z = O0(mm ) for R>> 1. (4.21)
Since
2 i
/ Holo oy = or / 2foftdR = 2 (4.22)
R? 0
we have as R — 400,
Hi{(R)=—njlogR+ C" + o(1) (4.23)

where C'* is a constant determined from matching to the outer solution.
We now turn to the O(¢) equations:

—& -V = Ady + &1 (1 — 2|D)?) — ®2D, (4.24)
~V XV x Ag — % 3,VP, + TV, — (q>1v60 + @Ovil)] =0. (4.25)

Let ®; = f1e™?. Then (4.24) becomes

_fl(fo cosf — ﬁsm@) fz(fé sin9+injﬁcosﬁ)
TR r (4.26)

. 1 _
=Afi+2in;Vi VO — ﬁfl + (=21 — f5 T
Let fi = A(R)cosf + B(R)sin @ and separate real and imaginary parts:
A(R)= Ar(R)+iA;(R), B(R)= B.(R)+iB;(R),
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we obtain the following equations for the real functions A,(R), Br(R), A;(R), and

& f = A"+ %A; + (1 —3f2 - %) A, —nj 2}? (4.27)
~éafy = Bl + ;B’ (1 —3f% - ;2) B, + ]ﬁ' (4.28)
_ngzj; Al + %Ag + (1 —f2 - 2 )A +n; 252 (4.29)
n51f0 _Bg’+%Bg+ (1-1’5—%) Bi—nj%’“. (4.30)

Here we have adopted a slight abuse of notation: §; = (&1,&2).
The solutions of these equations can be obtained through:

A =67, Ay =EnW

. . (4.31)
BT :€2Za Blz—fln]W
where Z and W satisfy

1 9 2 2W
—fi= Z”—I—RZ' (1—3f0 _Rz)Z+ 72 (4.32)

fO " / 2 27

4.
T =W"+ RW —fi- W+ — e (4.33)
As R — 400, the asymptotic behavior of W and Z is given by
1

W= ——RlogR+COR+O(logR) (4.34)
Z:—ﬁlogR—l—O(R) (4.35)

Here (Y is a fixed constant which can be determined numerically from the profile
of fo .

Turning now to (4.25), we have

B, VD + Dy Vd; — (B, VP, + VD)

_ , - _ (4.36)
= (f1 = AV R+ 2in; foNVO(f1 + f1) + foV(f1 = f1)
Therefore, we can write (4.25) as
2
AH; + — cos [féBi g fiA, + njfoA;]
(4.37)

2
+= sinH[—féAi + o fi By + njfoB;] =0
Hence we have

Hy = G1(R)cos + Ga(R)sin b, (4.38)
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where (G; and (G5 satisfy
Gl + %G’l - %Gl n % [féBi i fiA, + njfoA;] (4.39)
Gl + %G; - %Gz n % [—féAZ» 0 f)B, + njfoB;] —0  (4.40)

Using (4.31), we obtain

G1 = n]'élG, G2 = n]'ézG (441)
where (G satisfies
1 1 2
As R — 400, we have
G=mR+0O(log R) (4.43)

where my is a constant which can be determined from the functions fy, W and 7.
In summary, we have obtained the following inner solution for A in the core
of the j-th vortex:

H=e(—njlog R+ C*) + nymié; - X + ... (4.44)

Outer solution revisited:
Coming back to the outer solution, we let r; = |z — £;(¢)|. From (4.23) we
have

hi(x) — —njlogr;, asr; — 0. (4.45)
The solution of (4.12) and (4.45) is given by
N
hi(z) = =27 Y n;Ko(lx — & (1)) (4.46)
ji=1

Here Ky(r) is the modified Bessel function.
The asymptotic behavior of Ky(r) is given by:

Ko(r) ~ (4.47)

1 21)1/26—7" r —s 400
r

For r; <« 1, we have locally:

Hy(z) = —njlogr; + C1 — | D _miVEo(|§ — &) | - (x —&(1) +O0(r]) (4.48)
i£]
where C1 = 3~ Ko(|¢; — &]).
i£j
Matching: ’
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Write (4.44) as

H =e(—njlogr; + njloge+ C* + njmléj Az =&®)+ ... (4.49)
Matching of (4.48) and (4.49) gives:
C* =C1—njloge (4.50)
nymi&; =Y niVEo(|¢ — &) (4.51)
i#j

Ideally we should have included an order eloge term in the inner expansion. But
this 1s only a matter of formality.
(4.51) is the equation we are looking for. We can rewrite it as

mié; = —Ve, H(Er, .. En) (4.52)
where
M, En) = Y mini Ko(|€ = &1) (4.53)
i#j

An immediate consequence is that the interaction between a pair of vortices is
repulsive if their indices have the same sign, and attractive if their indices have
different sign.
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Numerical Experiments on the
Ginzburg-Landau Equations

Man Kam Kwong*

Abstract. We report on some numerical experiments done on the Ginzburg-Landau
equations of the theory of superconductivity. The equations under periodic boundary
conditions are solved numerically by using a nonstandard discretization and the sweeping
algorithm. The programs, written in Matlab and Fortran, work in an interactive mode
and include graphics display.

1991 Mathematics Subject Classification: 65F05, 65N22, 82D55.

1. Introduction

In this article we report on experiments we did on solving the Ginzburg-
Landau (GL) equations on a Sun Sparc IT workstation. Our contributions consist
of a careful formulation of the discrete form of the equations, a choice of a suitable
gauge transformation to simplify the equations, a new “sweeping” algorithm, and a
practical implementation of the solution procedure that includes run-time graphics
display. More details will be given in a forthcoming paper [9].

The GL equations arise in the theory of superconductivity. For a recent survey
of previous work done on the equations, see the articles [3] by Chapman, Howison,
and Ockendon and [5] by Du, Gunzburger, and Peterson.

Present address: Mathematics and Computer Science Division Argonne National
Laboratory Argonne, IL 60439-4844. This work was supported by the Applied Math-
ematical Sciences subprogram of the Office of Energy Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38.
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Theoretical physicists have long been able to extract useful information from
the GL equations by constructing their solutions “analytically,” based on series
approximations, or by ignoring certain unimportant variations in the solutions.
One of the triumphs of this approach was the prediction by Abrikosov [1] that
certain superconductors, classified as Type II, admit vortices of supercurrent, a
fact confirmed by experiments only ten years later. Numerical solution of the
full equations, especially for the simulation of vortices, has been successful only in
recent years. The different approaches include simulated annealing (Doria et al.[4]),
the relaxation method (Adler and Piran [2], Wang and Hu [13]), optimization
(Garner et al. [7]), and finite elements (Du, Gunzburger, and Peterson [5,6]).

Although simulated annealing, being a Monte Carlo method, consumes many
computing cycles, it carries a better assurance for finding the global minimizer
of the energy functional. All other approaches yield local critical points which,
although they are solutions to the GL equations, may not be the physically mean-
ingful global minimizer. The relaxation method is simple in theory, but time-
consuming because small time steps are required to avoid instability of the nu-
merical scheme. Wang and Hu applied it only to the case of a single vortex. More
recent work by Maekawa, Kato, and Enomoto [12] employs the same technique to
treat the time-dependent GL equations. The optimization approach makes use of
state-of-the-art optimization and linear algebra techniques in advanced scientific
computing and is the choice for designing large-scale production codes. The finite
elements method is important because it is applicable to arbitrary geometry and
admits higher-order refinements, while the other methods are limited to first-order
finite difference approximations.

Our work falls between the optimization and the finite element approaches.
Our code runs on a Sparc II with reasonable speed; it can be easily parallelized to
work faster on larger computers. It gives the user more control over the experiment.
For instance, parameters can be altered interactively and the experiment repeated
without having to recompile the program; The results are displayed graphically
for the user to monitor the progress. These capabilities are made possible by using
the Matlab package, which provides a powerful programming environment. The
code is able to employ finer grids to give smoother solutions than those achievable
in [6]. Unlike the optimization approach, our method can be and has actually been
successfully modified to solve the time-dependent GL equations.
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2. The Discrete GL Model

We discuss only the two-dimensional case in this paper; the generalization to
the full three-dimensional case is straightforward. The superconducting material
is in the form of a thin film occupying a domain in R%. When placed in a magnetic
field, with the direction of the field perpendicular to the film, Type-II super-
conductors form vortices of superconducting current. Close to regular hexagonal
arrangements of these vortices have been observed experimentally. Distortions can
be attributed to impurities and defects in the material. A typical numerical result
is shown in Figure 1. In the periodic GL model, it is assumed that, at least deep
into the interior of the domain when boundary effects are negligible, the magnetic
state of a pure and homogeneous material varies doubly periodically: one can carve
out a core region 2 such that the state of the entire superconductor, except for a
thin boundary layer, can be accurately reproduced by extending that of € peri-
odically. Traditionally (see, for example, [4]), € is chosen to be a rectangle, such
as that shown on the left in Figure 1. In order to reproduce a regular hexagonal
lattice, the aspect ratio of the rectangle has to be 1 :+/3.

Figure 1. Core regions

Du, Gunzburger, and Peterson [6] suggested the more general parallelogram
region, such as that shown on the right of Figure 1. For a hexagonal lattice, the
acute angle of the parallelogram is 60°. The two special choices shown here in
Figure 1 are actually equivalent. To see this, we can dissect the parallelogram into
two triangles as shown in Figure 2, and translate the upper one to form a rectangle
that is congruent to the rectangular region.
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Figure 2. Equivalence of two special core regions

According to Ginzburg and Landau [8], the magnetic state of the material is
completely determined by two functions, a complex-valued scalar function ¢ and
a (two-dimensional in our two-dimensional version) vector potential A = (A, B).
The fundamental postulate is that for equilibrium these functions seek to minimize
an energy functional, which, in dimensionless units, has the form

G, a) = | (w—|¢|2+|<V—iA>¢|2+m2|wA|2) dx,  (21)
b - Q 2 b M

where « i1s a constant characteristic of the metal. The superconductor is classified
as Type ITif k > 1/y/2, and as Type I otherwise.

The functional is invariant under the so-called gauge transformations. Let y
be any real-valued function on Q. Then the transformed pair (3, A)

P =1eX, A=A+Vy, (2.2)

yields the same energy as that of (¢, A). Indeed, (¢, A) and (), A) are considered
as equivalent representatives of the same magnetic state of the material.

This gauge invariance has more than one consequence. First, there is not only
one single minimizer to the free energy, but an entire class of gauge equivalent
solutions. Second, the assumption that the magnetic state varies periodically does
not imply that (¢, A) varies periodically, but only that they are gauge equivalent
on opposite edges of 2. These facts gives rise to complications in the formulation
of the boundary value problem, but they can also be used to our advantage. We
can confine our search to solutions that have special properties. The technique has
traditionally been called “fixing a gauge.” For instance, the London gauge requires
that V-A = 0, and Wang and Hu note that B can be chosen independent of y. An
excellent discussion of gauge fixing can be found in Du, Gunzburger, and Peterson
[5]. In [9], we show the existence of a gauge stronger than that of Wang and Hu
and compatible with a simplified set of “quasi-periodic” boundary conditions. To
sumimarize:
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A is fully periodic and is constant along the top edge,

B and 1 are periodic with respect to the top and bottom edges,

B is independent of y and has a jump of & on the vertical edges, and
1 has a phase change ¢™®¥ on the vertical edges.

Here h = 2wn/L, is a constant determined by the number of vortices n in Q2
and the length L, of the vertical edge of €. In turn, A determines the external
magnetic field. The fact that B is independent of y significantly reduces the total
number of unknowns to be solved. Another advantage of this choice of gauge is
that the ensuing differential equations for A and B are “decoupled” in the sense
that a cross-term involving B is absent in the equation for A and vice versa. This
makes it simple to solve for A and B in each iterative step.

Gauge field theorists do not use standard finite difference methods on the con-
tinuous form of the energy functional for numerical purposes. With such methods,
the discretized form of the gauge transform no longer preserves the energy, as a
result of truncation errors. Field theorists have adopted the following modifica-
tions (see, for example, [2]). Suppose that € is discretized as usual with a uniform
rectangular grid, with grid spacings of h, and hy. The order parameter v takes
values at each of the grid points. The z-component A of A takes values on the
bond (line) joining a grid point with its right-hand neighbor, while B takes values
on the bond joining a grid point with its upper neighbor. To simplify the formulas,
we define

U=¢e4% and V=Pl (2.3)

The free energy is then approximated by the discrete functional

2
ik e 40 Y R R B, 7
gdzz(%—wu ] L
. ks Y
gI‘ld (24)
AT — A B~ — B
+ &2 T 4 K2 T )hxhy

The arrow direction indicates the appropriate neighbors (boundary grid points
have neighbors that are outside of 2, but these can be interpreted as the appropri-
ate value on grid points lying on the the opposite edge, modified according to the
given boundary conditions). The conventional justification for this formula is that
after an expansion in Taylor series, (2.1) and (2.4) agree up to first-order terms.
Invariance is restored under a discrete gauge transformation:

—

_ . _ — _ T_
G=eN, A=Ay X "X B_p XX (2.5)
hy hy
In [9] we give a new interpretation to the discrete functional, clarify what “A
and B are defined on the bonds” means, and show that the approximation offered

by (2.4) is, in fact, of a higher order than is traditionally believed.
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There is another disadvantage of working directly with the discretized form of
(2.2). The order parameter ¢ is a highly oscillatory function, as a result of large
variations of its phase. A moderately fine spatial grid, as is allowable in practice, is
usually not adequate to resolve ¢ in regions of high oscillation. In such cases, the
finite difference (¢~ —¢)/h, can be a very poor approximation for the derivative
91 /0x. On the other hand, in (2.4) it is the difference between ¢~ and U4 that is

being computed. As pointed out in [9], we are actually approximating the derivative

6(1/)eifA)/6x by means of a central difference. The product function U1 oscillates
much less than ¢ itself. We have, therefore, chosen (2.4) as the starting point of
our numerical method.

The Euler equations corresponding to the minimization of (2.4) are then

U4 =2 U™ Vil =20 4 vy

2 —

AT —2A4 AL S (=gt U)
h2 he

=0, (2.7)

and

B— —2B+B~ 1 S (Pl ve)
2 N, 2 - hy

Y column

— 0, (2.8)

where () denotes the imaginary part of a complex number, and Ny, is the number
of rows in the grid. Although (2.6) is probably known to everyone who uses the
discrete functional, it has not been mentioned in the literature. Note the simplicity
of the linear operator on ¢ represented by the first two terms (as compared to the
corresponding Euler equation obtained from (2.1)); it is a generalized discrete
Laplace operator, having variable coefficients instead of the familiar {1,—2,1}.
Fach of (2.6) and (2.7) stands for as many equations as there are grid points,
while (2.8) stands for only N, equations. Note also that there would be an extra
term involving B in (2.7) and one involving A in (2.8), if we had not used our
special gauge.

To conclude the section, we summarize the numerical problem we are tackling:

Given arectangular region € of suitable size (L, x Ly ), a grid (with Ny x N,
points), and the number of vortices in  (n which is usually 2, 4, or 8), we
wish to find the 2N, x Ny + N, unknown values: ¢ (at each grid point), 4 (on
each bond), and B (on each column of bonds) that satisfy the GL equations
(2.6)-(2.7) and the appropriate boundary conditions.
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3. The Solution — the Sweeping Algorithm

We describe in this section how the solution to the problem is computed by using
an iterative scheme. The system of equations (2.6)—(2.8) are quasi-linear and can
be rewritten in the operator form:

L= (|9]* = )y = F(¥), (3.1)
MA = f(i, A), (3.2)
NB = g(+, B). (3.3)

After inverting the linear operators, we obtain the following iterative formulas:

1/)n+1 = E_lF(1/)n), An+1 = M_lf(1/}naAn)a Bn+1 = N_lg(1/)naBn)' (34)

For our initial triple (¢, Ao, Bo), we take ¢ to be random, Ay to be 0, and By
to be linear and increasing from —h/2 to h/2. The formulas (3.4) are used recur-
sively to form the sequence of approximations (¢, A,, By) until they converge.

In our actual program, we employed some additional techniques to gain faster
convergence. Rather than using (3.4), we solve (3.1)—(3.3) by using a quasi-Newton
method. A damping factor is introduced to achieve stability. Also instead of taking
(¥n, An, Bn) to be the starting point for the next iteration, a line search in the
direction of this triple is performed to obtain a better starting point with lower
energy.

Equation (3.3) is a cyclic tridiagonal linear system and can easily be solved
by the linear algebra package Matlab. Although (3.2) comprises more equations
than (3.3), once the right-hand side is known (computed from the results from the
previous iterative step), the equations for each column of grid bonds are decoupled
from those of another column. Thus, there are N, systems of cyclic tridiagonal
linear systems, each of which can be solved in exactly the same way as for (3.3).

The more interesting and difficult job is to invert £, a five-point stencil that is
a linear combination of the values of ¥ at each grid point and its four neighbors:
left, right, down, and up. The general form of a five-point stencil is

Sle]=Cz+ Lz~ 4+ Rz~ + Dzt 4+ U2, (3.5)

where C', L, D, and U are coefficients that can vary from one grid point to another.
A nonhomogeneous stencil equation is

S[z] = b, (3.6)

where b is given at each grid point.
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The classical method for solving (3.6) is to treat it as a sparse linear system
of order equal to the total number of grid points. Efficient use of existing sparse
matrix solvers can then be used. The technique, however, is not simple for many
who are not familiar with the subject area. In [10], we proposed an intuitively
more straightforward method, the sweeping algorithm, for inverting certain regular
five-point stencils including, £. The method is related to the shooting method
for solving boundary value problems of ordinary differential equations. Regular
forms of the method are not hard to implement, and Matlab programs have been
successfully written and reported in [11]. These Matlab programs are adequate for
the purpose of our experiments on solving the GL equations.

One of the basic ideas of the sweeping algorithm is that once the values of
the variable z is known on two columns (or rows) of grid points, its values on
an adjacent column (row) can be computed from (3.6), provided that none of the
stencil coefficients vanishes. For instance, take the column to the right of the two
known columns. Each grid point is a right-hand neighbor of some grid point on
the second column. Hence, from (3.6),

b— (Cz4 Le— 4 Db 4 U2
Ll (G5 ZR+ 24Uz (3.7)

Continuing in this way, we can compute the values of z on every column, and can

solved (3.6). The difficulty, of course, is to figure out the values on the two initial
columns.

Our 1dea is to start with a wild guess, find out how much error we have made,
and then fine-tune the initial guess to obtain the correct answer. Since one wild
guess is just as good (or as bad) as another, we pick the simplest one, namely, that
z = 0 on the two initial columns. We then compute z on the remaining columns.
After we have finished with the computation, we will have used N, — 2 columns
of the stencil equations. There are two more columns of equations that have not
been used; they are not likely to be satisfied, however, since our initial guess is
rather haphazard. The discrepancy (from satisfying these remaining equations) is
a vector E of order 2N, and serves as a measure of how much we have missed the
target and also as our guide for making corrections in the steps to come.

We next sweep the homogeneous stencil for a unit variation in each of the
grid points on the two initial columns. The ensuing discrepancy in the last two
columns of equations tells us what difference will be introduced by tuning each of
the initial grid points. All this information is thee gathered to form a rectifying
matrix R. The knowledge of £ and R will inform us how to choose the values of
z on the initial columns correctly.

This simple procedure works remarkably well for grids of moderate sizes. For
large grid sizes, some sophisticated modifications are needed to avoid instability
(the rapid growth of z after repeated application of (3.7)). Two methods, multi-
stage and partial sweepings, together with their implementations are described in

detail in [10] and [11].
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Besides its simplicity, the sweeping algorithm has other advantages. The com-
plete information for constructing the inverse of the five-point stencil is stored in
the relatively small inverse of the 2N, x 2N, matrix R. There is also great poten-
tial for exploiting parallelism in the algorithm, but further work needs to be done
along this line.

To conclude this section, we make some remarks concerning local minimiz-
ers of the GL equations. Although many people are apt to claim that, in their
computation, they never see a critical point that is not the global minimizer, our
experience seems to indicate the opposite. As the results in the next section show,
the vortices appear at different heights in the core region. However, if one starts
with a symmetric initial guess, then, at least in theory, the nonannealing methods
should lead to a symmetric solution with the two vortices located at the same
height. One can argue that such a solution is normally “unstable,” so that any
small perturbation (such as those arising from rounding errors), is enough to shift
the unstable solution to a stable one. Yet some numerical methods for solving non-
linear equations, such as Newton’s method, do not distinguish between stable and
unstable solutions. Indeed, in our experience, this is what will happen if we use a
quasi-Newton’s method on (3.1) too early in the process. Our use of a random ini-
tial 1p is an attempt to maximize the chance of starting near the correct solution.
Also, our experiments indicate that, for regions containing many vortices, there
can be numerous locally stable configurations distinct from the global minimizer.
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4. Numerical Experiments

The main programs are written in Matlab to take advantage of its interactive
features. In order to achieve greater speed, those commands connected with the
sweeping algorithm have been recoded in Fortran by A. J. Lindeman and the
compiled object file have been dynamically linked to Matlab through the “mex”
facility. Lindeman, who also helped with most of the experiments mentioned in
this section, is a participant in the summer 1992 Student Research Participation
Program at Argonne National Laboratory, and is currently a physics graduate
student at Purdue University

A typical run of an experiment is as follows. One sets, either interactively or
by using a Matlab script file, the various parameters of the problem: the size of the
domain L, and Ly, the number of vortices n, the superconductor constant «, the
number of grid points N, and N, the tolerance used to terminate the iteration,
etc. The user needs to issue only two commands to get the experiment going. The
first is a subroutine setup to set up the grid, to pick the initial state as a starting
point for iteration, and to compute the various quantities needed to impose the
quasi-periodic boundary conditions. The command setup calls an other subroutine
rr automatically to compute the coefficients of the five-point stencil equation (3.4)
and the rectifying matrices for the sweeping algorithm. This command is needed
only at the beginning of the experiment. The second command, rn, performs the
iteration process. It calls two subroutines, onep and oneAB, automatically and
repeatedly to accomplish each iteration step until the desired accuracy is reached.
After each step, various information, such as the maximum value of ¢, and the
free energy are printed on the screen. A contour plot of |1, is also displayed, for
the user to monitor the progress.

In our experiments, we obtained plots of |1|? for various domain sizes. Two
of these are shown below. Both are computed with & = 5. The contour heights in

the graphs are (0.05,0.1,0.15,0.20) and (0.1,0.3,0.5,0.7,0.9), respectively.

Figure 3. Two sample contour plots of ||
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We have investigated whether a parallelogram core region with angle 60°,
corresponding to a strict hexagonal lattice, gives the best vortex configuration,
with the lowest energy. To this end, we used core regions of the same area (=
3 % 3\/5) but different aspect ratios, and computed the least energy solutions for
each. At first we discovered, to our surprise, that 60° is not the optimal angle.
A plot of the energy (minus 16.2295 against the aspect ratio of the core region
(width/height) is shown below. We used a grid size of 24 x 24 and x = 5.

Figure 4. Energy against aspect ratio of core region

More experimentation revealed that this was due to discretization error. In-
creasing the grid size shifts the optimal angle towards 60°, and indeed an extrapo-
lation with N, Ny — oo shows the optimal angle to be 60°, within approximation
error.

We have experimented with the phenomenon of pinning. A pinning site is
caused by some defect in the superconducting material. It has a high resistivity to
currents and so tends to pin down the center of a vortex. We modeled a pinning
center by adding a penalty term 7y|i(x)|? to the energy functional, where v is a
large positive constant and x is the location of the defect. This extra term alters
the stencil coefficient C' at the grid point corresponding to the pinning site. Our
method successfully simulated the phenomena by giving a solution that nearly
vanishes at the site.
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Finally, we were also able to detect numerically the upper critical field. An
increase in the external magnetic field corresponds to a more tightly packed vortex
lattice, or a smaller core region. We solved the GL equations over core regions of
different sizes and discovered that the maximum of v falls as the area decreases.
Below the bifurcation point, L, = 2.68929, which corresponds to an upper critical
field of H.» = 1.00316868, the trivial solution, ¥» = 0, takes over as the global
minimizer. A plot of max |i| against the external field H is given below.
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Figure 5. max|y| against external field
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